Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production.
نویسندگان
چکیده
Xenorhabdus nematophila is a gammaproteobacterium and broad-host-range insect pathogen. It is also a symbiont of Steinernema carpocapsae, the nematode vector that transports the bacterium between insect hosts. X. nematophila produces several secreted enzymes, including hemolysins, lipases, and proteases, which are thought to contribute to virulence or nutrient acquisition for the bacterium and its nematode host in vivo. X. nematophila has two lipase activities with distinct in vitro specificities for Tween and lecithin. The gene encoding the Tween-specific lipase, xlpA, has been identified and is not required for X. nematophila virulence in one insect host, the tobacco hornworm Manduca sexta. However, the gene encoding the lecithin-specific lipase activity is not currently known. Here, we identify X. nematophila estA, a gene encoding a putative lecithinase, and show that an estA mutant lacks in vitro lipase activity against lecithin but has wild-type virulence in Manduca sexta. X. nematophila secondary-form phenotypic variants have higher in vitro lecithinase activity and estA transcript levels than do primary-form variants, and estA transcription is negatively regulated by NilR, a repressor of nematode colonization factors. We establish a role for xlpA, but not estA, in supporting production of nematode progeny during growth in Galleria mellonella insects. Future research is aimed at characterizing the biological roles of estA and xlpA in other insect hosts.
منابع مشابه
Xenorhabdus nematophila: Mutualist and Pathogen
T he gram-negative bacterium Xenorhabdus nematophila engages in a mutualistic relationship with a specific soil nematode and also can mount potent pathogenic attacks on a variety of insects. During its mutualisticpathogenic life cycle, Xenorhabdus produces a wide range of exoenzymes, antimicrobial and nematicidal compounds, and insect toxins. Moreover, the nematode-bacteria complex is useful fo...
متن کاملOpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host.
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded beta-barrel porin. opnS was expressed during growth in insect hemolymph and ex...
متن کاملCpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus.
The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host...
متن کاملIdentification and functional characterization of a Xenorhabdus nematophila oligopeptide permease.
The bacterium Xenorhabdus nematophila is a mutualist of Steinernema carpocapsae nematodes and a pathogen of insects. Presently, it is not known what nutrients the bacterium uses to thrive in these host environments. In other symbiotic bacteria, oligopeptide permeases have been shown to be important in host interactions, and we therefore sought to determine if oligopeptide uptake is essential fo...
متن کاملEarly colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria.
The bacterium Xenorhabdus nematophila is a mutualist of the entomopathogenic nematode Steinernema carpocapsae. During its life cycle, the bacterium exists both separately from the nematode and as an intestinal resident of a nonfeeding nematode form, the infective juvenile (IJ). The progression of X. nematophila from an ex vivo existence to a specific and persistent colonization of IJs is a mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 76 1 شماره
صفحات -
تاریخ انتشار 2010